Последние статьи
Домой / Дом / Основные принципы работы тэс. Сравнительная характеристика тэс и аэс с точки зрения экологической проблемы

Основные принципы работы тэс. Сравнительная характеристика тэс и аэс с точки зрения экологической проблемы

Электрической станцией называется энергетическая установка, служащая для преобразования природной энергии в электрическую. Наиболее распространены тепловые электрические станции (ТЭС), использующие тепловую энергию, выделяемую при сжигании органического топлива (твердого, жидкого и газообразного).

На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.

Высокий технический уровень энергетики может быть обеспечен только при гармоничной структуре генерирующих мощностей: в энергосистеме должны быть и АЭС, вырабатывающие дешевую электроэнергию, но имеющие серьезные ограничения по диапазону и скорости изменения нагрузки, и ТЭЦ, отпускающие тепло и электроэнергию, количество которой зависит от потребностей в тепле, и мощные паротурбинные энергоблоки, работающие на тяжелых топливах, и мобильные автономные ГТУ, покрывающие кратковременные пики нагрузки.

1.1 Типы тэс и их особенности.

На рис. 1 представлена классификация тепловых электрических станций на органическом топливе.

Рис.1. Типы тепловых электростанций на органическом топливе.

Рис.2 Принципиальная тепловая схема ТЭС

1 – паровой котёл; 2 – турбина; 3 – электрогенератор; 4 – конденсатор; 5 – конденсатный насос; 6 – подогреватели низкого давления; 7 – деаэратор; 8 – питательный насос; 9 – подогреватели высокого давления; 10 – дренажный насос.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции – это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название – ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн кВт.

Промышленные электростанции – это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС – тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива – мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь – низкокалорийный уголь или отходы добычи высококалорийного каменного угля (антрацитовый штыб - АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину – паровую турбину. ПТУ – основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).

Традиционная современная газотурбинная установка (ГТУ) – это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Парогазовые тепловые электростанции комплектуются парогазовыми установками (ПГУ), представляющими комбинацию ГТУ и ПТУ, что позволяет обеспечить высокую экономичность. ПГУ-ТЭС могут выполняться конденсационными (ПГУ-КЭС) и с отпуском тепловой энергии (ПГУ-ТЭЦ). В настоящее время в России работает четыре новых ПГУ-ТЭЦ (Северо-Западная ТЭЦ Санкт-Петербурга, Калининградская, ТЭЦ-27 ОАО «Мосэнерго» и Сочинская), построена также теплофикационная ПГУ на Тюменской ТЭЦ. В 2007 г. введена в эксплуатацию Ивановская ПГУ-КЭС.

Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок – энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.

По уровню начального давления различают ТЭС докритического давления, сверхкритического давления (СКД) и суперсверхкритических параметров (ССКП).

Критическое давление – это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД – 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам вполняется с промежуточным перегревом и по блочной схеме. К суперсверхкритическим параметрам условно относят давление более 24 МПа (вплоть до 35 МПа) и температуру более 5600С (вплоть до 6200С), использование которых требует новых материалов и новых конструкций оборудования. Часто ТЭС или ТЭЦ на разный уровень параметров строят в несколько этапов – очередями, параметры которых повышаются с вводом каждой новой очереди.

1 – электрический генератор; 2 – паровая турбина; 3 – пульт управления; 4 – деаэратор; 5 и 6 – бункеры; 7 – сепаратор; 8 – циклон; 9 – котел; 10 – поверхность нагрева (теплообменник); 11 – дымовая труба; 12 – дробильное помещение; 13 – склад резервного топлива; 14 – вагон; 15 – разгрузочное устройство; 16 – конвейер; 17 – дымосос; 18 – канал; 19 – золоуловитель; 20 – вентилятор; 21 – топка; 22 – мельница; 23 – насосная станция; 24 – источник воды; 25 – циркуляционный насос; 26 – регенеративный подогреватель высокого давления; 27 – питательный насос; 28 – конденсатор; 29 – установка химической очистки воды; 30 – повышающий трансформатор; 31 – регенеративный подогреватель низкого давления; 32 – конденсатный насос.

На схеме, представленной ниже, отображен состав основного оборудования тепловой электрической станции и взаимосвязь ее систем. По этой схеме можно проследить общую последовательность технологических процессов протекающих на ТЭС.

Обозначения на схеме ТЭС:

  1. Топливное хозяйство;
  2. подготовка топлива;
  3. промежуточный пароперегреватель;
  4. часть высокого давления (ЧВД или ЦВД);
  5. часть низкого давления (ЧНД или ЦНД);
  6. электрический генератор;
  7. трансформатор собственных нужд;
  8. трансформатор связи;
  9. главное распределительное устройство;
  10. конденсатный насос;
  11. циркуляционный насос;
  12. источник водоснабжения (например, река);
  13. (ПНД);
  14. водоподготовительная установка (ВПУ);
  15. потребитель тепловой энергии;
  16. насос обратного конденсата;
  17. деаэратор;
  18. питательный насос;
  19. (ПВД);
  20. шлакозолоудаление;
  21. золоотвал;
  22. дымосос (ДС);
  23. дымовая труба;
  24. дутьевой вентилятов (ДВ);
  25. золоуловитель.

Описание технологической схемы ТЭС:

Обобщая все вышеописанное, получаем состав тепловой электростанции:

  • топливное хозяйство и система подготовки топлива;
  • котельная установка: совокупность самого котла и вспомогательного оборудования;
  • турбинная установка: паровая турбина и ее вспомогательное оборудование;
  • установка водоподготовки и конденсатоочистки;
  • система технического водоснабжения;
  • система золошлокоудаления (для ТЭС, работающих, на твердом топливе);
  • электротехническое оборудование и система управления электрооборудованием.

Топливное хозяйство в зависимости от вида используемого на станции топлива включает приемно-разгрузочное устройство, транспортные механизмы, топливные склады твердого и жидкого топлива, устройства для предвари-тельной подготовки топлива (дробильные установки для угля). В состав ма-зутного хозяйства входят также насосы для перекачки мазута, подогреватели мазута, фильтры.

Подготовка твердого топлива к сжиганию состоит из размола и сушки его в пылеприготовительной установке, а подготовка мазута заключается в его подогреве, очистке от механических примесей, иногда в обработке спецприсадками. С газовым топливом все проще. Подготовка газового топлива сводится в основном к регулированию давления газа перед горелками котла.

Необходимый для горения топлива воздух подается в топочное пространство котла дутьевыми вентиляторами (ДВ). Продукты сгорания топлива — дымовые газы — отсасываются дымососами (ДС) и отводятся через дымовые трубы в атмосферу. Совокупность каналов (воздуховодов и газоходов) и различных элементов оборудования, по которым проходит воздух и дымовые газы, образует газовоздушный тракт тепловой электростанции (теплоцентрали). Входящие в его состав дымососы, дымовая труба и дутьевые вентиляторы составляют тягодутьевую установку. В зоне горения топлива входящие в его состав негорючие (минеральные) примеси претерпевают химико-физические превращения и удаляются из котла частично в виде шлака, а значительная их часть выносится дымовыми газами в виде мелких частиц золы. Для защиты атмосферного воздуха от выбросов золы перед дымососами (для предотвращения их золового износа) устанавливают золоуловители.

Шлак и уловленная зола удаляются обычно гидравлическим способом на золоотвалы.

При сжигании мазута и газа золоуловители не устанавливаются.

При сжигании топлива химически связанная энергия превращается в тепловую. В результате образуются продукты сгорания, которые в поверхностях нагрева котла отдают теплоту воде и образующемуся из нее пару.

Совокупность оборудования, отдельных его элементов, трубопроводов, по которым движутся вода и пар, образуют пароводяной тракт станции.

В котле вода нагревается до температуры насыщения, испаряется, а образующийся из кипящей котловой воды насыщенный пар перегревается. Из котла перегретый пар направляется по трубопроводам в турбину, где его тепловая энергия превращается в механическую, передаваемую на вал турбины. Отработавший в турбине пар поступает в конденсатор, отдает теплоту охлаждающей воде и конденсируется.

На современных ТЭС и ТЭЦ с агрегатами единичной мощностью 200 МВт и выше применяют промежуточный перегрев пара. В этом случае турбина имеет две части: часть высокого и часть низкого давления. Отработавший в части высокого давления турбины пар направляется в промежуточный перегреватель, где к нему дополнительно подводится теплота. Далее пар возвращается в турбину (в часть низкого давления) и из нее поступает в конденсатор. Промежуточный перегрев пара увеличивает КПД турбинной установки и повышает надежность ее работы.

Из конденсатора конденсат откачивается конденсационным насосом и, пройдя через подогреватели низкого давления (ПНД), поступает в деаэратор. Здесь он нагревается паром до температуры насыщения, при этом из него выделяются и удаляются в атмосферу кислород и углекислота для предотвращения коррозии оборудования. Деаэрированная вода, называемая питательной, насосом подается через подогреватели высокого давления (ПВД) в котел.

Конденсат в ПНД и деаэраторе, а также питательная вода в ПВД подогреваются паром, отбираемым из турбины. Такой способ подогрева означает возврат (регенерацию) теплоты в цикл и называется регенеративным подогревом. Благодаря ему уменьшается поступление пара в конденсатор, а следовательно, и количество теплоты, передаваемой охлаждающей воде, что приводит к повышению КПД паротурбинной установки.

Совокупность элементов, обеспечивающих конденсаторы охлаждающей водой, называется системой технического водоснабжения. К ней относятся: источник водоснабжения (река, водохранилище, башенный охладитель — градирня), циркуляционный насос, подводящие и отводящие водоводы. В конденсаторе охлаждаемой воде передается примерно 55% теплоты пара, поступающего в турбину; эта часть теплоты не используется для выработки электроэнергии и бесполезно пропадает.

Эти потери значительно уменьшаются, если отбирать из турбины частично отработавший пар и его теплоту использовать для технологических нужд промышленных предприятий или подогрева воды на отопление и горячее водоснабжение. Таким образом, станция становится теплоэлектроцентралью (ТЭЦ), обеспечивающей комбинированную выработку электрической и тепловой энергии. На ТЭЦ устанавливаются специальные турбины с отбором пара — так называемые теплофикационные. Конденсат пара, отданного тепловому потребителю, возвращается на ТЭЦ насосом обратного конденсата.

На ТЭС существуют внутренние потери пара и конденсата, обусловленные неполной герметичностью пароводяного тракта, а также невозвратным расходом пара и конденсата на технические нужды станции. Они составляют приблизительно 1 — 1,5% от общего расхода пара на турбины.

На ТЭЦ могут быть и внешние потери пара и конденсата, связанные с отпуском теплоты промышленным потребителям. В среднем они составляют 35 — 50%. Внутренние и внешние потери пара и конденсата восполняются предварительно обработанной в водоподготавливающей установке добавочной водой.

Таким образом, питательная вода котлов представляет собой смесь турбинного конденсата и добавочной воды.

Электротехническое хозяйство станции включает электрический генератор, трансформатор связи, главное распределительное устройство, систему электроснабжения собственных механизмов электростанции через трансформатор собственных нужд.

Система управления осуществляет сбор и обработку информации о ходе технологического процесса и состоянии оборудования, автоматическое и дистанционное управление механизмами и регулирование основных процессов, автоматическую защиту оборудования.

На тепловых электростанциях люди получают практически всю необходимую энергию на планете. Люди научились получать электрический ток иным образом, но все еще не принимают альтернативные варианты. Пусть им невыгодно использовать топливо, они не отказываются от него.

В чем секрет тепловых электростанций?

Тепловые электростанции неслучайно остаются незаменимыми. Их турбина вырабатывает энергию простейшим способом, используя горение. За счет этого удается минимизировать расходы на строительство, считающиеся полностью оправданными. Во всех странах мира находятся такие объекты, поэтому можно не удивляться распространению.

Принцип работы тепловых электростанций построен на сжигании огромных объемов топлива. В результате этого появляется электроэнергия, которая сначала аккумулируется, а потом распространяется по определенным регионам. Схемы тепловых электростанций почти остаются постоянными.

Какое топливо используется на станции?

Каждая станция использует отдельное топливо. Оно специально поставляется, чтобы не нарушался рабочий процесс. Этот момент остается одним из проблематичных, так как появляются транспортные расходы. Какие виды использует оборудование?

  • Уголь;
  • Горючие сланцы;
  • Торф;
  • Мазут;
  • Природный газ.

Тепловые схемы тепловых электростанций строятся на определенном виде топлива. Причем в них вносятся незначительные изменения, обеспечивающие максимальный коэффициент полезного действия. Если их не сделать, основной расход будет чрезмерным, поэтому не оправдает полученный электрический ток.

Типы тепловых электростанций

Типы тепловых электростанций - важный вопрос. Ответ на него расскажет, каким образом появляется необходимая энергия. Сегодня постепенно вносятся серьезные изменения, где главным источником окажутся альтернативные виды, но пока их применение остается нецелесообразным.

  1. Конденсационные (КЭС);
  2. Теплоэлектроцентрали (ТЭЦ);
  3. Государственные районные электростанции (ГРЭС).

Электростанция ТЭС потребует подробного описания. Виды различны, поэтому только рассмотрение объяснит, почему осуществляется строительство такого масштаба.

Конденсационные (КЭС)

Виды тепловых электростанций начинаются с конденсационных. Такие ТЭЦ применяются исключительно для выработки электроэнергии. Чаще всего она аккумулируется, сразу не распространяясь. Конденсационный метод обеспечивает максимальный КПД, поэтому подобные принципы считаются оптимальными. Сегодня во всех странах выделяют отдельных объекты крупного масштаба, обеспечивающие обширные регионы.

Постепенно появляются атомные установки, заменяющие традиционное топливо. Только замена остается дорогостоящим и длительным процессом, так как работа на органическом топливе отличается от иных способов. Причем отключение ни одной станции невозможно, ведь в таких ситуациях целые области остаются без ценной электроэнергии.

Теплоэлектроцентрали (ТЭЦ)

ТЭЦ используются сразу для нескольких целей. В первую очередь они используются для получения ценной электроэнергии, но сжигание топлива также остается полезным для выработки тепла. За счет этого теплофикационные электростанции продолжают применяться на практике.


Важной особенностью является том, что такие тепловые электростанции виды другие превосходят относительно небольшой мощностью. Они обеспечивают отдельные районы, поэтому нет необходимости в объемных поставках. Практика показывает, насколько выгодно такое решение из-за прокладки дополнительных линий электропередач. Принцип работы современной ТЭС является ненужной только из-за экологии.

Государственные районные электростанции

Общие сведения о современных тепловых электростанциях не отмечают ГРЭС. Постепенно они остаются на заднем плане, теряя свою актуальность. Хотя государственные районные электростанции остаются полезными с точки зрения объемов выработки энергии.

Разные виды тепловых электростанций дают поддержку обширным регионам, но все равно их мощность недостаточна. Во времена СССР осуществлялись крупномасштабные проекты, которые сейчас закрываются. Причиной стало нецелесообразное использование топлива. Хотя их замена остается проблематичной, так как преимущества и недостатки современных ТЭС в первую очередь отмечают большие объемы энергии.

Какие электростанции являются тепловыми? Их принцип построен на сжигании топлива. Они остаются незаменимыми, хотя активно ведутся подсчеты по равнозначной замене. Тепловые электростанции преимущества и недостатки продолжают подтверждать на практике. Из-за чего их работа остается необходимой.

ТЭС – электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива (рис.Д.1).

Различают тепловые паротурбинные электростанции (ТПЭС), газотурбинные (ГТЭС) и парогазовые (ПГЭС). Подробнее остановимся на ТПЭС.

Рис.Д.1 Схема ТЭС

На ТПЭС тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрического генератора. В качестве топлива на таких ТЭС используют уголь, мазут, природный газ, лигнит (бурый уголь), торф, сланцы. Их КПД достигает 40%, мощность – 3 ГВт. ТПЭС, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называют конденсационными электростанциями (официальное название в РФ – Государственная районная электрическая станция, или ГРЭС). На ГРЭС вырабатывается около 2/3 электроэнергии, производимой на ТЭС.

ТПЭС оснащенные теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ); ими вырабатывается около 1/3 электроэнергии, производимой на ТЭС.

Известны четыре типа угля. В порядке роста содержания углерода, а тем самым и теплотворной способности эти типы располагаются следующим образом: торф, бурый уголь, битуминозный (жирный) уголь или каменный уголь и антрацит. В работе ТЭС используют в основном первые два вида.

Уголь не является химически чистым углеродом, также в нем содержится неорганический материал (в буром угле углерода до 40%), который остается после сгорания угля в виде золы. В угле может содержаться сера, иногда в составе сульфида железа, а иногда в составе органических компонентов угля. В угле обычно присутствуют мышьяк, селен, а также радиоактивные элементы. Фактически уголь оказывается самым грязным из всех видов ископаемого топлива.

При сжигании угля образуются диоксид углерода, оксид углерода, а также в больших количествах оксиды серы, взвешенные частицы и оксиды азота. Оксиды серы повреждают деревья, различные материалы и оказывают вредное влияние на людей.

Частицы, выбрасываемые в атмосферу при сжигании угля на электростанциях, называются «летучей золой». Выбросы золы строго контролируются. Реально попадает в атмосферу около 10% взвешенных частиц.

Работающая на угле электростанция мощностью 1000 МВт сжигает 4-5 млн. т угля в год.

Поскольку в Алтайском крае отсутствует добыча угля, то будем считать, что его привозят из других регионов, и для этого прокладывают дороги, тем самым, изменяя природный ландшафт.

ПРИЛОЖЕНИЕ Е

Организационно-производственная структура АЭС в основном подобна ТЭС . На АЭС вместо котельного цеха организуется реакторный цех. К нему относятся реактор, парогенераторы, вспомогательное оборудование. В состав вспомогательного подразделения входит химико-дезактивационный цех, который включает в себя спецводоочистку, хранилище жидких и сухих радиоактивных отходов, лабора­торию.

Специфичным для АЭС является отдел радиационной безопасности, задачей которого является предотвращение опасного для здоровья воздействия излучений на обслуживающий персонал и окружающую среду. В состав отдела входят радиохимическая и радиометрическая лаборатория, специальный санпропускник и спец-прачечная.

Цеховая организационно-производственная структура атомной электростанции

Организационно-производственная структура предприятия электрических сетей

В каждой энергосистеме для осуществления ремонтно-эксплуатационного и диспетчерского обслуживания электросетевого хо­зяйства создаются предприятия электрических сетей (ПЭС). Электросе­тевые предприятия могут быть двух типов: специализированные и комплексные. Специализированными являются: предприятия, об­служивающие высоковольтные линии и подстанции напряжени­ем свыше 35 кВ; распределительные сети 0,4...20 кВ в сельской местности; распределительные сети 0,4... 20 кВ в городах и посел­ках городского типа. Комплексные предприятия обслуживают сети всех напряжений и в городах, и в сельской местности. К их числу относится большинство предприятий.

Предприятия электросетей управляются по следующим схемам управления:

    территориальной;

    функциональной;

    смешанной.

При терри­ториальной схеме управления электрические сети всех напряже­ний, расположенные на определенной территории (как правило, на территории административного района), обслуживаются райо­нами электросетей (РЭС), подчиненными руководству предприя­тия.

Функциональная схема управления характеризуется тем, что электрообъекты закреплены за соответствующими службами пред­приятия, обеспечивающими их эксплуатацию, и применяется при высокой концентрации электросетевого хозяйства на сравнитель­но небольшой территории. Специализация, как правило, бывает по под станционному, линейному оборудованию, релейной защите и т.п.

Наибольшее распространение получила смешанная схема управления предприятием, при которой наиболее сложные эле­менты сети закреплены за соответствующими службами, а основ­ной объем электросетей эксплуатируется районами или участка­ми электрических сетей. В состав таких предприятий входят функциональные отделы, производственные службы, районы и участки сетей.

Предприятие электрических сетей может быть или структур­ным подразделением в составе АО-Энерго, или самостоятельным производственным подразделением по передаче и распределению электроэнергии - АО ПЭС. Основной задачей ПЭС является обес­печение договорных условий электроснабжения потребителей за счет надежной и эффективной эксплуатации оборудования. Организационная структура ПЭС зависит от многих условий: место­расположения (город или сельская местность), уровня развития предприятия, класса напряжения оборудования, перспективы развития сетей, объема обслуживания, который рассчитывается на основании отраслевых нормативов в условных единицах, и дру­гих факторов.